wR = 0.034	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
S = 2.1	$\Delta \rho_{\rm min}$ = -0.27 e Å ⁻³
1209 reflections	Atomic scattering factors
204 parameters	from International Tables
All H-atom parameters re-	for X-ray Crystallography
fined	(1974, Vol. IV)

H atoms were refined with a common but variable C—H bond length.

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (Å²)

$U_{\text{eq}} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	y	z	U_{eq}
N11	0.4653 (1)	0.5211 (1)	0.2257 (5)	0.0426 (9)
N12	0.4705 (1)	0.5511(1)	0.3952 (5)	0.0407 (9)
C13	0.5138 (1)	0.5702(1)	0.4409 (6)	0.0328 (10)
C14	0.5547(1)	0.5568(1)	0.3175 (6)	0.0319 (10)
N15	0.5490(1)	0.5298 (1)	0.1395 (5)	0.0360 (8)
C16	0.5039(1)	0.5147(1)	0.1002 (5)	0.0325 (10)
C31	0.5135(1)	0.6054 (1)	0.6231 (6)	0.0325 (10)
C32	0.4778 (1)	0.6015 (1)	0.7827 (6)	0.0356 (11)
C33	0.4776(1)	0.6330(1)	0.9575 (7)	0.0434 (12)
C34	0.5117 (2)	0.6686 (1)	0.9726 (7)	0.0533 (13)
C35	0.5461 (1)	0.6742 (1)	0.8113 (7)	0.0556 (14)
C36	0.5468 (1)	0.6425 (1)	0.6372 (7)	0.0441 (12)
C41	0.6053 (1)	0.5688 (1)	0.3713 (7)	0.0349 (11)
C42	0.6243 (1)	0.5574 (1)	0.5739 (8)	0.0487 (14)
C43	0.6726 (2)	0.5670 (2)	0.6150 (9)	0.0690 (17)
C44	0.7012 (2)	0.5886 (2)	0.4607 (10)	0.0737 (18)
C45	0.6827 (2)	0.6004 (2)	0.2605 (9)	0.0632 (16)
C46	0.6346 (2)	0.5899 (1)	0.2161 (7)	0.0456 (12)

Table 2. *Geometric parameters* (Å, °)

		Q1.4 X1.5	1 220 (5)
N11—N12	1.343 (4)	C14N15	1.338 (5)
N11-C16	1.332 (4)	C14-C41	1.478 (4)
N12-C13	1.341 (4)	N15-C16	1.340 (4)
C13-C14	1.414 (4)	C16—C16 ⁱ	1.496 (4)
C13-C31	1.488 (5)		
N12-N11-C16	116.7 (3)	C13-C14-C41	125.4 (3)
N11-N12-C13	120.2 (3)	N15-C14-C41	115.0 (3)
N12-C13-C14	120.0 (3)	C14-N15-C16	115.7 (3)
N12-C13-C31	114.4 (3)	N11-C16-N15	127.0 (3)
C14-C13-C31	125.7 (3)	N11—C16—C16 ⁱ	115.9 (3)
C13-C14-N15	119.6 (3)	N15-C16-C16 ⁱ	117.0 (3)
	Symmetry code: (i)	1-x, 1-y, -z.	

The generous support given by the Hanns Seidel Stiftung e. V. is gratefully acknowledged. We thank Dr U. Klement for the collection of diffractometer data.

References

Case, F. H. (1965). J. Org. Chem. 30, 931-933.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved

- Culbertson, B. M. & Parr, G. R. (1967). J. Heterocycl. Chem. 4, 422-424.
- Dedichen, G. (1936). Avh. Nor. Vidensk, Akad. Oslo, Mat. Naturvidensk. Kl. 5 42 ff; Chem. Abstr. (1937), 31, 4985-4988.
- Ernst, S. & Kaim, W. (1986). J. Am. Chem. Soc. 108, 3578-3586.
- Jensen, R. E. & Pflaum, R. T. (1965). Anal. Chim. Acta, 32, 235-244.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.
- Kalyanasundaram, K., Nazeeruddin, Md. K., Grätzel, M., Viscardi, G., Savarino, P. & Barni, E. (1992). *Inorg. Chim. Acta*, 198–200, 2968–2975.
- Kawanishi, Y., Kitamura, N. & Tazuke, S. (1989). Inorg. Chem. 28, 2968–2975.
- Kiss, E. (1984). Anal. Chim. Acta, 161, 231-244.
- Oeser, E. (1973). Justus Liebigs Ann. Chem. pp. 1970-1973.
- Vickovic, I. (1988). CRYSTAL STRUCTURE UTILITY. A highly automatic and selective program for calculation and presentation of geometrical parameters and their e.s.d.'s in crystal structure analysis. Univ. of Zagreb, Yugoslavia.

Acta Cryst. (1993). C49, 1543-1547

Structure of 1,4-Benzenedicyanamide Dianion Derivatives

MANUEL A. S. AQUINO AND ROBERT J. CRUTCHLEY*

The Ottawa-Carleton Chemistry Institute, Carleton University, Ottawa, Canada K1S 5B6

FLORENCE L. LEE, ERIC J. GABE AND CORINNE BENSIMON

The National Research Council of Canada, Chemistry Division, Ottawa, Canada K1A 0R6

(Received 9 April 1992; accepted 8 February 1993)

Abstract

The crystal structures of four tetraphenylarsonium salts of 1,4-dicyanamidebenzene derivatives, namely, 1,4-benzenedicyanbis(tetraphenylarsonium) amide(2-), bis(tetraphenylarsonium) 2,5-dimethyl-1,4-benzenedicyanamide(2-), bis(tetraphenylarsonium) 2,5-dichloro-1,4-benzenedicvanamide(2-) and bis(tetraphenylarsonium) 2,3,5,6-tetrachloro-1.4-benzenedicvanamide(2-), were determined. All of the derivatives are essentially planar with the cvanamide groups in an anti configuration, suggesting a significant degree of π coupling between the cyanamide groups and phenyl ring. No evidence was seen of π stacking for any of the 1,4-dicyanamidebenzene dianion derivatives.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares-planes deviations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71093 (8 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: SE1020]

Atwood, J. L., Krass, D. K. & Pandler, W. W. (1974). J. Heterocycl. Chem. 11, 743–746.

Comment

Aumuller & Hunig (1986) have recently prepared a novel series of planar acceptor molecules (Gerson, Gescheidt, Mockel, Aumuller, Erk & Hunig, 1988), the dicyanoquinonediimines [DCNQI, (I)].

Charge-transfer complexes with the stoichiometry $Cu(DCNQI)_2$, that incorporate the radical anion DCNQI, have been shown to possess metallic properties and in one instance conductivity increased with decreasing temperature reaching a maximum of 5×10^5 S m⁻¹ at 3.5 K (Aumuller, Erk, Klebe, Hunig, Von Schutz & Werner, 1986). These properties are largely the result of the planarity of the radical anion DCNQI molecule and its ability to form π stacks in the solid state (Kato, Kobayashi & Kobayashi, 1989).

The DCNQI molecule is simply the two-electron oxidation product of the anionic 1,4-dicyanamidebenzene (Dicyd²⁻) compound, (II), of this study. We are currently studying the solid-state electronexchange mediating properties of Dicyd²⁻ and its derivatives which are expected to be maximized when planarity is maintained (Aquino, Lee, Gabe, Greedan & Crutchley, 1991; Aquino, Lee, Gabe, Bensimon, Greedan & Crutchley, 1992). While the addition of one electron to form the radical anion DCNQI molecule did not result in loss of planarity, the perturbation of two-electron addition on DCNQI geometry has yet to be evaluated.

The preparations of the tetraphenylarsonium salts of 1,4-dicyanamidebenzene dianion $(\text{Dicyd}^{2-}),$ 1,4-dicyanamide-2,5-dimethylbenzene dianion (Me_2Dicyd^{2-}) and 2,5-dichloro-1,4-dicyanamidebenzene dianion (Cl₂Dicyd²⁻) follow essentially the same procedure as that for 2,3,5,6-tetrachloro-1,4dicyanamidebenzene dianion (Cl_4Dicyd^{2-}) which has been published (Aquino, Bostock & Crutchley, 1990). Unlike the tetrachloro derivative, these compounds can be easily isolated pure in their neutral protonated form. Yellow (Dicyd²⁻, Cl₂Dicyd²⁻ and Cl_4Dicyd^{2-}) or red (Me₂Dicyd²⁻) cubic crystals suitable for crystallographic analyses were grown under argon by the slow cooling of warm saturated DMSO solutions of the tetraphenylarsonium salts.

Fig. 1. ORTEP diagrams of (a) 1,4-dicyanamidebenzene dianion, (b) 1,4-dicyanamide-2,5-dimethylbenzene dianion, (c) 2,5-dichloro-1,4-dicyanamidebenzene dianion and (d) 2,3,5,6tetrachloro-1,4-dicyanamidebenzene dianion. The tetraphenylarsonium ions have been excluded for clarity.

All of the dianion derivatives are almost planar, the terminal nitrile nitrogen being no more than 0.31 (13) Å out of the plane formed by the central phenyl ring. In all cases the cyanamide groups are in an *anti* configuration and are almost linear, with the NCN bond angle ranging from 168.8 (5) to 177.5 (19)°.

A slight contraction of bond lengths for the phenyl carbon to amide nitrogen bond [1.408 (19)-1.360 (6) Å is observed with increasing electron-withdrawing properties of the substituents on the phenyl ring. For Cl₄Dicyd²⁻, the steric repulsion of the ortho chlorine substituents is not of sufficient magnitude to overcome the π coupling between the phenyl ring and the cyanamide groups and so force the cyanamide groups out of the phenyl ring plane. This is not the case for 1,4-dicyanamide-2,3,5,6-tetramethylbenzene dianion where the steric repulsion of *ortho* methyl groups is enough to force the cyanamide groups out of plane while still maintaining an anti configuration (Aquino, Lee, Gabe, Greedan & Crutchley, 1991).

The crystal lattices of alkali-metal salts of radical anion DCNQI derivatives have shown the DCNQI to be ordered into π -stacks (Kato, Kobayashi, Kobayashi, Mori & Inokuchi, 1988). This was not observed in the crystal lattices of the Dicyd²⁻ derivatives of this study. We are currently investigating transition metal cations that may promote π -stack formation of Dicyd²⁻ derivatives.

Fig. 2. Stereoview of [AsPh₄]₂[Me₂Dicyd] unit cells.

Mo $K\alpha$ radiation

Cell parameters from 21

 $0.25 \times 0.20 \times 0.20$ mm

Crystal source: recrystallized

 $\lambda = 0.70930 \text{ Å}$

reflections

 $\theta = 17.5 - 22.5^{\circ}$

 $\mu = 1.56 \text{ mm}^{-1}$

from DMSO

T = 295 K

Cubic

Red

Experimental

Dicyd²⁻ Crystal data [As(C₆H₅)₄]₂.C₈H₄N₄ $M_r = 922.82$ Monoclinic $P2_1/a$ a = 9.7659 (6) Å b = 21.6128 (13) Å c = 11.1040 (7) Å $\beta = 110.560$ (10)° V = 2194.42 (23) Å³ Z = 2 $D_x = 1.397$ Mg m⁻³

Data collection

Enraf-Nonius diffractometer $\theta/2\theta$ scans Absorption correction: none 4910 measured reflections 2848 independent reflections 1804 observed reflections $[I > 2.5\sigma(I)]$ $R_{int} = 0.020$

Refinement

Refinement on FFinal R = 0.040wR = 0.034S = 1.2901804 reflections 347 parameters

Me₂Dicyd²⁻ Crystal data

 $[As(C_{6}H_{5})_{4}]_{2}.C_{10}H_{8}N_{4}$ $M_{r} = 950.88$ Monoclinic $P2_{1}/n$ a = 9.8860 (14) Å b = 16.416 (5) Å c = 14.909 (3) Å $\beta = 99.391 (17)^{\circ}$ $V = 2387.2 (10) Å^{3}$ Z = 2 $D_{x} = 1.323 \text{ Mg m}^{-3}$

Data collection

Rigaku diffractometer $\theta/2\theta$ scans Absorption correction: ψ -scan $T_{min} = 0.6129$, $T_{max} =$ 0.7251 3759 measured reflections 3530 independent reflections 1648 observed reflections $[I > 2.5\sigma(I)]$

Refinement

Refinement on FFinal R = 0.072wR = 0.051S = 3.631648 reflections 290 parameters

Cl₂Dicyd²⁻ Crystal data [As(C₆H₅)₄]₂.C₈H₄Cl₂N₄ M_r = 991.71 $\theta_{\text{max}} = 22.4^{\circ}$ $h = -10 \rightarrow 9$ $k = 0 \rightarrow 22$ $l = 0 \rightarrow 11$ 3 standard reflections frequency: 150 min intensity variation: 0.902%

All H-atom parameters refined $(\Delta/\sigma)_{max} = 0.633$ $\Delta\rho_{max} = 0.340 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.360 \text{ e } \text{\AA}^{-3}$ Extinction coefficient: 0.150 (67) μ m

Mo $K\alpha$ radiation $\lambda = 0.70930$ Å Cell parameters from 25 reflections $\theta = 20-23.5^{\circ}$ $\mu = 1.44 \text{ mm}^{-1}$ T = 295 KCubic $0.20 \times 0.20 \times 0.20 \text{ mm}$ Red Crystal source: recrystallized from DMSO

 $R_{int} = 0.05$ $\theta_{max} = 23.45^{\circ}$ $h = -11 \rightarrow 10$ $k = 0 \rightarrow 18$ $l = 0 \rightarrow 16$ 3 standard reflections frequency: 150 min intensity variation: 0.757%

H-atom parameters not refined $(\Delta/\sigma)_{max} = 0.105$ $\Delta\rho_{max} = 0.570 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.680 \text{ e } \text{Å}^{-3}$ Extinction coefficient: 0.183 (130) μ m

Mo $K\alpha$ radiation $\lambda = 0.70930$ Å

REGULAR STRUCTURAL PAPERS

Monoclinic $P2_1/n$ a = 9.8673 (23) Å b = 18.3696 (19) Å c = 13.1791 (11) Å $\beta = 102.875 (14)^{\circ}$ $V = 2328.8 (16) Å^{3}$ Z = 2 $D_r = 1.414 Mg m^{-3}$	Cell parameters from 23 reflections $\theta = 20-22.5^{\circ}$ $\mu = 1.59 \text{ mm}^{-1}$ T = 295 K Cubic $0.40 \times 0.30 \times 0.20 \text{ mm}$ Yellow Crystal source: recrystallized from DMSO	$wR = 0.029$ $(\Delta/\sigma)_{max} = 0.506$ $S = 1.974$ $\Delta\rho_{max} = 0.900$ e Å ⁻³ 3606 reflections $\Delta\rho_{min} = -0.790$ e Å ⁻³ 379 parametersExtinction coefficient: 0.052 (13) μ mTable 1. Fractional atomic coordinates and equivisotropic thermal parameters (Å ²)Bins is the mean of the principal axes of the thermal ellipsoi		-3 Å ⁻³ nt: quivalent			
		200	, uno moun e	, i uio principi		-	D.
Data collection		Dicvd ²⁻	X	у		Z	Diso
Enraf-Nonius diffractometer	$R_{\rm int} = 0.006$	N(1)	0.5426 (5)	0.39489	9 (22)	0.3650 (4)	3.8 (3)
$\theta/2\theta$ scans	$\theta_{\rm max} = 22.45^{\circ}$	N(2)	0.7843 (6)	0.3620	5 (24)	0.3644 (5)	5.2 (3)
Absorption correction:	$h = -10 \rightarrow 10$	C(1)	0.5270 (6)	0.4465	(3)	0.4335 (5)	3.1 (3)
none	$k = 0 \rightarrow 19$	C(2)	0.3900(7)	0.4595	(3) (3)	0.4413(3)	3.5 (3)
3068 measured reflections	$l = 0 \rightarrow 14$	C(4)	0.6726 (9)	0.3799	(3)	0.3684 (5)	3.7 (3)
3041 independent reflections	3 standard reflections	H(2)	0.312 (5)	0.4301	(22)	0.397 (4)	4.0
2685 observed reflections	frequency: 150 min	H(3)	0.269 (5)	0.5181	(23)	0.503 (5)	3.8
L > 25 - (L)	intensity variation: 0.55%	MenDicyd	2-				
[1 > 2.30(1)]	Interestry variation. 0.35%	N(1)	0.5626 (20) 0.7084	(11)	0.8075 (12)	7.5 (10)
Refinement		N(2)	0.4000 (14	0.6329	(8)	0.8856 (8)	4.8 (6)
		C(1)	0.4889 (21) 0.6721	(10)	0.8441 (11)	5.1 (9)
Refinement on F	All H-atom parameters re-	C(2)	0.4485 (16) 0.5672	(8) (10)	0.9425 (9)	4.0 (6)
Final $R = 0.026$	fined	C(4)	0.3618 (18) 0.5258	(9)	0.9932 (9)	3.7 (6)
wR = 0.020	$(\Delta/\sigma)_{\rm max} = 280$	C(5)	0.2147 (18) 0.5552	(11)	0.9909 (12)	5.6 (8)
S = 4.02	$\Delta \rho_{\rm max} = 0.260 \ {\rm e} \ {\rm A}^{-3}$	H(3)	0.346	0.433		1.090	5.4
2685 reflections	$\Delta \rho_{\rm min}$ = -0.290 e Å ⁻³	Cl-Diovd ²	_				
374 parameters	Extinction coefficient:	Cl	0.31768 (7	0.9691	9 (4)	1 05046 (6)	4 88 (4)
	0.842 (32) μm	N(1)	-0.0486 (3)	0.7523	5 (13)	0.93366 (21)	6.16 (15)
		N(2)	0.10354 (2	2) 0.8594	7 (13)	0.97190 (18)	4.64 (13)
Cl. Diavd ²⁻		C(1)	0.0179 (3)	0.8048	2 (17)	0.95150 (22)	4.30 (16)
CLIDICYU		C(2)	0.1394 (3)	0.9281	5 (15) 5 (15)	0.98308 (18)	3.55 (14)
Crystal data		C(4)	-0.0916 (3)	0.9463	2 (16)	0.96122 (21)	3.75 (14)
$[A_{5}(C_{6}H_{5})_{4}]_{2}.C_{8}Cl_{4}N_{4}$	Mo $K\alpha$ radiation	H(4)	-0.1556 (21) 0.9144	(11)	0.9427 (16)	3.0 (6)
$M_r = 1060.60$	$\lambda = 0.70930 \text{ Å}$	CI D:	_				
Triclinic	Cell parameters from 112	CI4Dicyd ²	0 88530 (1	2) 0 5485	5 (12)	0 24951 (19)	4 34 (6)
$\overline{P1}$	reflections	Cl(2)	1.18638 (1	2) 0.4809	(12)	0.32588 (10)	4.78 (7)
a = 10.0609 (10) Å	$\theta = 20-22.5^{\circ}$	C(1)	0.9483 (4)	0.5234	(4)	0.3896 (3)	2.86 (21)
b = 10.2590 (11) Å	$\mu = 3.38 \text{ mm}^{-1}$	C(2)	1.0816 (4)	0.4915	(4)	0.4242 (4)	3.01 (21)
c = 12.0028 (10) Å	T = 295 K	C(3)	0.8569 (4)	0.5354	(4) (3)	0.4654 (4)	2.91 (22)
$\alpha = 101.936 (11)^{\circ}$	Cubic	C(4)	0.6503 (5)	0.6087	(3)	0.3551 (4)	3.35 (23)
$\beta = 103.436 (8)^{\circ}$	$0.40 \times 0.20 \times 0.20$ mm	N(2)	0.5684 (4)	0.6489	(4)	0.2865 (3)	5.09 (25)
$\gamma = 90.783 (10)^{\circ}$	Yellow						
$V = 117642(22) Å^3$	Crystal source: recrystallized	Table 2.	Selected i	bond lengt	hs (Å).	angles (°) a	nd out of
Z = 4	from DMSO			nlana dista	noost ((Å)	.nu eni ej
$D_r = 1.497 \text{ Mg m}^{-3}$		D: 12-		pune usu	mes. ((A)	
		Dicya-		1 399 (9)	C(1) C	(2)	1 200 (0)
Data collection		N(1) = C(1) N(1) = C(4)		1.299 (10)	C(1) = C C(2) = C	(2)	1.385 (9)
Enrof Nonius diffractometer	$0 - 22.45^{\circ}$	N(2)C(4)		1.172 (10)	C(2)—H	I(2)	0.98 (5)
A/2A score	$b_{\rm max} = 22.45$	C(1)-N(1)-	-C(4)	118.7 (5)	C(1)—C	C(2) - C(3)	123.1 (5)
Absorption correction	$h = -12 \rightarrow 12$ $h = 0 \rightarrow 13$	N(1)-C(1)-	-C(2)	119.1 (5)	C(1)—C	2(2)—H(2)	115 (3)
Absorption correction:	$k = 0 \rightarrow 15$	C(2)—C(1)-	-C(3)a	114.8 (5)	N(1)—C	C(4)—N(2)	174.1 (6)
8100 managered reflections	$l = -13 \rightarrow 13$	N(1)		0.31 (13)	N(2)		0.201 (19)
5627 independent reflections	5 staluaru reliections	C(4)		0.097 (16)			
3606 observed reflections	interneity, veriation,	Me ₂ Dicyd ²	-				
[1 > 25 - (1)]	0.721 %	C(3) - H(3)		1.100 (16)	N(2)C	2(2)	1.408 (19)
$R_{\rm r} = 0.040$	0.131/0	N(2) - C(1)		1.32 (3)	C(4)-C	.(3)	1.327 (22)
$\Lambda_{\rm int} = 0.040$		C(2) - C(4) -	-C(5)	119.8 (13)	N(2) = C	C(2) = C(4)	121 1 (14)
Refinement		C(3)a - C(2)		116.2 (13)	C(1) = 0	(2) - C(2)	121.1 (14)
		C(2)C(4)-	-C(3)	118.8 (13)	N(1)—C	C(1)—N(2)	177.5 (19)
Refinement on F	H-atom parameters not re-	N(2)		0.001 (19)	N(2)		0.00 (3)
Final $R = 0.048$	fined	C(1)	-	-0.005 (23)			. /

1546

Cl ₂ Dicyd ²⁻			
ClC(3)	1.740 (3)	C(2)C(3)	1.392 (4)
N(1)-C(1)	1.160 (4)	C(3) - C(4)a	1.379 (4)
N(2)C(1)	1.301 (4)	C(4)—H(4)	0.857 (21)
N(2)—C(2)	1.392 (3)		
C(1) - N(2) - C(2)	118.38 (22)	C(3) - C(2) - C(4)	114.96 (24)
N(1) - C(1) - N(2)	174.2 (3)	Cl-C(3)-C(2)	118.92 (21)
N(2) - C(2) - C(3)	119.53 (23)	C(2) - C(3) - C(4)a	122.10 (24)
N(2) - C(2) - C(4)	125.51 (25)		
N(2)	0.003 (3)	N(1)	0.305 (6)
C(1)	0.216 (5)		
ClaDicyd ²⁻		C(1) - C(3)	1.426 (6)
Cl(1) - C(1)	1.728 (4)	C(3) - N(1)	1.360 (6)
C(1) - C(2)	1.374 (6)	N(1)C(4)	1.299 (6)
		C(4)—N(2)	1.167 (7)
Cl(1) - C(1) - C(2)	120.1 (3)	C(2)a - C(3) - N(1)	118.9 (4)
C(2) - C(1) - C(3)	122.3 (4)	C(3) - N(1) - C(4)	130.1 (4)
Cl(2) - C(2) - C(3)a	115.7 (3)	N(1) - C(4) - N(2)	168.8 (5)
N(1)	0.015 (6)	N(2)	0.290 (16)
C(4)	0.153 (12)	• •	
• •			

† Distance from cyanamide atoms to the phenyl ring plane.

All chemicals and solvents were reagent grade or better. Tetraphenylarsonium chloride monohydrate (Strem), phenylenediamine (Aldrich), 2,5-dichloro-1,4-phenylenediamine (Aldrich) and 2,5-dimethyl-1,4-phenylenediamine (Aldrich) were used as received.

A $\theta/2\theta$ scan technique was employed with profile analysis (Grant & Gabe, 1978). The Me₂Dicyd²⁻ salt is easily oxidized and so measurements were carried out on a crystal sealed in a tube. No crystal decay was observed during measurement for any of the compounds of this study. The space groups were determined either by systematic absences or during the analysis.

The structures were solved by direct methods and refined by full-matrix least squares using weights based on counting statistics. H-atom positions were calculated. All the calculations were performed with the *NRCVAX* package (Gabe, Lee, Le Page, Charland & White, 1989). Atomic scattering factors were obtained from *International Tables for X-ray Crystallography* (1974, Vol. IV).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71067 (108 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: CD1008]

References

- Aquino, M. A. S., Bostock, A. E. & Crutchley, R. J. (1990). Inorg. Chem. 29, 3641–3644.
- Aquino, M. A. S., Lee, F. L., Gabe, E. J., Bensimon, C., Greedan, J. E. & Crutchley, R. J. (1992). J. Am. Chem. Soc. 114, 5130-5140.
- Aquino, M. A. S., Lee, F. L., Gabe, E. J., Greedon, J. E. & Crutchley, R. J. (1991). Inorg. Chem. 30, 3234–3236.
- Aumuller, A., Erk, P., Klebe, G., Hunig, S., Von Schutz, J. U. & Werner, H.-P. (1986). Angew. Chem. Int. Ed. Engl. 25, 740–741.
- Aumuller, A. & Hunig, S. (1986). Justus Liebigs Ann. Chem. 155, 142-164.
- Gabe, E. J., Lee, F. L., Le Page, Y., Charland, J.-P. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gerson, F., Gescheidt, G., Mockel, R., Aumuller, A., Erk, P. & Hunig, S. (1988). *Helv. Chim. Acta*, **71**, 1665-1672.

©1993 International Union of Crystallography Printed in Great Britain – all rights reserved Grant, D. F. & Gabe, E. J. (1978). J. Appl. Cryst. 11, 114-120.

Kato, R., Kobayashi, H. & Kobayashi, A. (1989). J. Am. Chem. Soc. 111, 5224-5232.

Kato, R., Kobayashi, H., Kobayashi, A., Mori, T. & Inokuchi, H. (1988). Synth. Methods, 27, B263-B268.

Acta Cryst. (1993). C49, 1547-1549

Structure of a Chiral Bicyclic 1-Hydroxyalkyl Phosphonamide

KEVIN J. KOELLER, NIGAM P. RATH AND CHRISTOPHER D. SPILLING*

Department of Chemistry, University of Missouri-St Louis, 8001 Natural Bridge Road, St Louis, Missouri 63121, USA

(Received 13 October 1992; accepted 9 February 1993)

Abstract

The crystal structure of a chiral racemic 1-hydroxyalkyl phosphonamide, 1,3-(2,2-dimethylpropyl)-2-[1-hydroxy-3-phenyl-(E)-2-propenyl]-2,3,3a,4,5,6,7,-7a-octahydro-1*H*-1,3,2-benzodiazaphosphole 2-oxide,m.p. 455–456 K, has been determined by X-ray diffraction. The title compound consists of a fivemembered ring with a tetrahedrally coordinatedphosphorus atom. In addition to the two N atoms ofthe five-membered ring, the phosphorus is bonded toan oxygen and the 1-carbon of a hydroxyalkyl chain.The five-membered ring is*trans*fused to a cyclohexane in the chair conformation. The solid-statestructure contains an intermolecular hydrogenbonded enantiomeric pair.

Comment

We recently reported the preparation and reactions of chiral phosphorous acid diamides (Koeller & Spilling, 1991). Treatment of phosphorous acid diamide (1) with butyllithium in tetrahydrofuran (THF) solution followed by addition of cinnamaldehyde to the resulting anion gave the 1-hydroxy phosphonamides (2) in an 8:1 ratio of diastereoisomers (Koeller & Spilling, 1993). Crystallization from an ethyl acetate/hexane mixture yielded only the major isomer. Evidence for the relative configuration of C(17) was not available by standard spectroscopic methods. Single-crystal X-ray diffraction analysis allowed assignment of the relative configuration of the new chiral centre as R resulting from the (S,S)diamide.